Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Marilyn M. Olmstead,* Moses A. Lee and Jay R. Stork

Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA

Correspondence e-mail:
olmstead@chem.ucdavis.edu

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.018$
$w R$ factor $=0.039$
Data-to-parameter ratio $=25.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[diaqua(1,4,7,10,13,16-hexaoxa-cyclooctadecane)barium(II)]- μ-cyano-[dicyano-platinum(II)]- μ-cyano]

The title compound, $\left[\mathrm{BaPt}(\mathrm{CN})_{4}\left(\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{6}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, contains a polymeric chain of alternating complexes of Ba^{2+} and $\mathrm{Pt}^{2+} . \mathrm{A}$ ten-coordinate Ba^{2+} complex results from coordination of the metal by 18 -crown- 6 and two water molecules, and N -atom coordination by a cyano group of $\left[\mathrm{Pt}(\mathrm{CN})_{4}\right]^{2-}$ and by a second cis-related cyano group of a second $\left[\mathrm{Pt}(\mathrm{CN})_{4}\right]^{2-}$ generated by a crystallographic b-glide. Crosslinking via hydrogen bonds involving the remaining two cyano N atoms completes the crystal structure in the a and c directions.

Comment

The propensity of Ba^{2+} to achieve high coordination numbers has enabled a number of salts of $\left[\mathrm{Ba}(18 \text {-crown- } 6)\left(\mathrm{H}_{2} \mathrm{O}\right)_{x}\right]^{2+}$ ($x=2$ and $3 ; 18$-crown-6 is $1,4,7,10,13,16$-hexaoxacyclooctadecane) to crystallize with coordinating anions, namely $\left[\mathrm{Co}(\mathrm{NCS})_{4}\right]^{2-}$ (Fan et al., 1987), $\left[\mathrm{Fe}(\mathrm{NCS})_{4}\right]^{2-}$ (Fan et al., 1989), $\left[\mathrm{CoCl}_{4}\right]^{2-}$ (Fender et al., 1994) and $\left[\mathrm{CuCl}_{4}\right]^{2-}$ (Kahwa et al., 1992). In these structures, the ligands of the tetrahedral anions coordinate to the Ba^{2+} ion in either a $\kappa^{2} \mathrm{Cl}$ or a $\kappa^{1} S$ fashion. None of the structures is polymeric. We report here the structure of a salt utilizing the planar dianion, $\left[\mathrm{Pt}(\mathrm{CN})_{4}\right]^{2-}$, which exhibits $\kappa^{1} N$ coordination to Ba^{2+} via two cyano ligands of the $\left[\mathrm{Pt}(\mathrm{CN})_{4}\right]^{2-}$ ion and forms a polymer of alternating complexes of Ba^{2+} and Pt^{2+}.

(I)

The asymmetric unit consists of $\left[\mathrm{Ba}\left(18\right.\right.$-crown-6) $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ $\left[\mathrm{Pt}(\mathrm{CN})_{4}\right]$, (I). As shown in Fig. 1, the crown ether is slightly domed, the Ba^{2+} ion lying 0.654 (1) \AA out of the plane of the six O atoms. The two water molecules cap the exo side of $\mathrm{Ba}\left(18\right.$-crown-6). In addition, atom N 4 from the $\left[\mathrm{Pt}(\mathrm{CN})_{4}\right]^{2-}$ ion is found on the exo side and forms a Ba1-N4-C4 angle of $155.0(2)^{\circ}$. In order to form the polymer, a cis-related cyano

Figure 1
A view of (I). Displacement ellipsoids are drawn at the 50% probability level. A portion of the coordinated $\left[\mathrm{Pt}(\mathrm{CN})_{4}\right]^{2-}$ ion generated by symmetry [symmetry code: (i) $\frac{1}{2}-x,-\frac{1}{2}+y, z$] is indicated with dashed lines. H atoms have been omitted for clarity.
group from a second $\left[\mathrm{Pt}(\mathrm{CN})_{4}\right]^{2-}$ ion, related by a crystallographic b-glide, is N -bound ($\mathrm{N} 3^{\mathrm{i}}$) to the endo side, giving angles $\mathrm{Ba}-\mathrm{N} 3^{\mathrm{i}}-\mathrm{C} 3^{\mathrm{i}}=118.2(2)^{\circ}$ and $\mathrm{N} 3^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{N} 4=$ $136.50(6)^{\circ}$ [symmetry code: (i) $\frac{1}{2}-x,-\frac{1}{2}+y, z$]. The polymeric chain is also bent at the Pt atom by virtue of the squareplanar geometry [$\mathrm{C} 4-\mathrm{Pt} 1-\mathrm{C} 3=89.06(10)^{\circ}$]. The ten-coordinate geometry of Ba^{2+} has no regular polyhedral shape as it is dictated by the constraints of the crown ether. The remainder of the structure consists of hydrogen bonding through the two remaining N atoms (N 1 and N 2). These motifs propagate orthogonally to the basic $\mathrm{Ba} \cdots \mathrm{Pt} \cdots \mathrm{Ba} \cdots \mathrm{Pt}$ chain. Fig. 2 depicts the hydrogen-bonding portion involving atom N 1 , as well as the chain propagation.

Bond distances and angles involving the central atoms of the cationic and anionic species are typical. For $\mathrm{Ba}-$ O (crown), the average distance is 2.858 (17) \AA, while the two $\mathrm{Ba}-\mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right)$ distances average $2.833(13) \AA$. The cyano coordination shows distances of $\mathrm{Ba} 1-\mathrm{N} 4=2.889$ (2) \AA for the exo group and $\mathrm{Ba} 1-\mathrm{N} 3^{\mathrm{i}}=2.901$ (2) \AA for the endo group.

Experimental

To a mixture of $\mathrm{Ba}\left[\mathrm{Pt}(\mathrm{CN})_{4}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.0426 \mathrm{~g}, 0.0838 \mathrm{mmol})$ and $18-$ crown-6 $(0.0210 \mathrm{~g}, 0.079 \mathrm{mmol})$ in a beaker was added sufficient methanol to dissolve the solids. The solution gradually changed from yellow to colorless. After brief warming, the solution was allowed to evaporate to dryness, yielding a white powder. The powder was dissolved in 90% ethanol with warming, and the solution was placed in a 5 mm tube. An equal amount of 100% ethanol was carefully layered on top and the tube was capped. After one week at room temperature, well formed crystals were harvested for data collection.

Crystal data

$\left[\mathrm{BaPt}(\mathrm{CN})_{4}\left(\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{6}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=736.85$
Orthorhombic, $P b c a$
$a=10.8458(6) \AA$
$b=17.0539(9) \AA$
$c=25.9179(13) \AA$
$V=4793.9(4) \AA^{3}$
$Z=8$
$D_{x}=2.042 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 7898 reflections
$\theta=2.4-31.5^{\circ}$
$\mu=7.51 \mathrm{~mm}^{-1}$
$T=100$ (2) K
Plate, colorless
$0.34 \times 0.20 \times 0.004 \mathrm{~mm}$

Figure 2
A portion of the polymeric chain propagated by the b glide and hydrogen bonding (dashed lines) between chains in the $a b$ plane. H atoms have been omitted.

Data collection

Bruker SMART APEX
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
$T_{\min }=0.21, T_{\max }=0.97$
62537 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.018$
$w R\left(F^{2}\right)=0.039$
$S=1.06$
7316 reflections
287 parameters
H -atom parameters constrained

7316 independent reflections 6160 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.046$
$\theta_{\text {max }}=30.5^{\circ}$
$h=-15 \rightarrow 15$
$k=-24 \rightarrow 23$
$l=-37 \rightarrow 37$

$$
\left.\begin{array}{rl}
w= & 1 /[
\end{array} \sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0044 P)^{2}\right)
$$

Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O7-H7D $\cdots \mathrm{N}^{\text {ii }}$	$0.83(3)$	$2.00(2)$	$2.827(3)$	$173(4)$
O8-H8D	$\cdots \mathrm{N}^{\text {iii }}$	$0.82(3)$	$2.04(2)$	$2.853(3)$

Symmetry codes: (ii) $\frac{3}{2}-x, y-\frac{1}{2}, z$; (iii) $x-\frac{1}{2}, y, \frac{1}{2}-z$.
H atoms on water molecules were located in a difference Fourier map and refined with a distance constraint of 0.84 (2) A. All other H atoms were treated as riding on their parent C atoms, with $\mathrm{C}-\mathrm{H}$ distances of $0.99 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The largest peak in a final difference map was $0.79 \AA$ from Pt1.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: $S A I N T$ (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: $X P$ in SHELXTL (Sheldrick, 1994); software used to prepare material for publication: SHELXL97.

metal-organic papers

References

Bruker (2005). APEX2 and SAINT (Version 7.15). Bruker AXS Inc., Madison, Wisconsin, USA.
Fan, Y.-P., Du, G.-Y. \& Zhang, W.-X. (1989). Acta Chim. Sinica, 47, 276-278. Fan, Y.-P., Zhang, W.-X. \& Wang, X.-W. (1987). Chem. J. Chin. Univ. 8, 297299.

Fender, N. S., Finegan, S. S., Miller, D., Mitchell, M., Kahwa, I. A. \& Fronczek, F. R. (1994). Inorg. Chem. 33, 4002-4008.

Kahwa, I. A., Miller, D., Mitchel, M., Fronczek, F. R., Goodrich, R. G., Williams, D. J., O’Mahoney, C. A., Slawin, A. M., Ley, S. V. \& Groombridge, C. J. (1992). Inorg. Chem. 31, 3963-3970.

Sheldrick, G. M. (1994). XP in SHELXTL. Version 5.1. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

